

Addendum to iTaxoTools manual: Hapsolutely and ConvPhase

Version: 7 November 2023

The code of Hapsolutely and ConvPhase is available at: https://github.com/iTaxoTools/Hapsolutely

Both the previous and new tools can be downloaded from the project's website <u>http://itaxotools.org</u> which also features a section with useful links, news, and FAQs.

How to cite: When using one of the programs included in the iTaxoTools 0.1.1. release in your study, please cite the main paper as follows.

Vences, M., Miralles, A., Brouillet, S., Ducasse, J., Fedosov, A., Kharchev, V., Kumari, S, Patmanidis, S., Puillandre, N., Scherz, M. D., Kostadinov, I., Renner, S. S. (2021). iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. *Megataxa* 6: 77-92.

For ConvPhase and Hapsolutely, we recommend citing also the original paper, and where appropriate the papers that introduced the code of Phase and SeqPhase, as well as the Fitchi approach, and the network reconstruction algorithms from PopArt:

- Vences, M., Patmanidis, S., Schmidt, J.-C., Matschiner, M., Miralles, A. & Renner, S.S. (2024). Hapsolutely: a user-friendly tool integrating haplotype phasing, network construction and haploweb calculation. #####
- Flot, J.F. (2010). seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 10: 162-166.

Flot J.F., Couloux A. & Tillier S (2010). Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus *Pocillopora* in Clipperton. BMC Evol Biol 10: 372.

Leigh J.W. & Bryant D. (2015). popart: full-feature software for haplotype network construction. Method Ecol. Evol., 6, 1110–1116.

Matschiner, M. (2016). Fitchi: haplotype genealogy graphs based on the Fitch algorithm. Bioinformatics 32: 1250–1252.

Miralles, A., Ducasse, J. Brouillet, S., Flouri, T., Fujisawa, T., Kapli, P., Knowles, L. L., Kumari, S., Stamatakis, A., Sukumaran, J., Lutteropp, S., Vences, M. & Puillandre, N. (2021). SPART, a versatile and standardized data exchange format for species partition information. Molecular Ecology Resources 22: 430-438.

Stephens, M., Smith, N.J. & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68: 978–989.

<u>Disclaimer</u>: The programs included in iTaxoTools are free software. All code specifically programmed for iTaxoTools can be redistributed and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

All tools not specifically programmed for iTaxoTools but constituting a modification or extension of the original code are also free software and most of them licensed under GNU v3, but partly, other licences apply.

We welcome all suggestions, comments, questions and bug reports. Please use the GitHub platform to submit those: for this, you just need to sign up at GitHub (a quick and easy procedure), navigate to the respective repository (see table with links below), and create "New Issue". The team of developers regularly checks all the issues and will deal with them asap (bug reports will be treated as priority).

1. ConvPhase

Example files provided:

ConvPhase_examplefile1.tsv Convphase_examplefile1_regular_fasta.fas Convphase_examplefile1_MolDformat_fasta.fas Convphase_examplefile1_HapViewformat_fasta.fas

ConvPhase_examplefile2.tsv Convphase_examplefile2_regular_fasta.fas Convphase_examplefile2_MolDformat_fasta.fas Convphase_examplefile2_HapViewformat_fasta.fas

All example files are nucleotide sequences. They can be inspected in a text editor. Example file 1 (in its different flavors) is a very simple file as shown in the explanations below. Example file 2 is a more complex and realistic file with a true example of sequences of the RAG-1 gene for 37 individuals of *Gephyromantis* frogs.

The tsv file is in tab-delimited text format and includes sequence identifier and optionally taxon identifier, as well as the (aligned) sequence.

The remaining example files are in fasta format, either in a generic format that includes only the sequence identifier in the sequence description line, or in specific formats where sequence identifier is separated by a pipe or a period character from the taxon identifier.

To test the functions of ConvPhase, import any of these files, and run the program either with default settings or with custom settings.

ConvPhase is a tool to apply the Phase algorithm (Stephens et al. 2001) to separate alleles in DNA sequences of diploid organisms. Sanger sequencing and some assembly strategies of other sequencing techniques produce consensus sequences where heterozygote positions are coded with IUPAC ambiguity codes. As soon as a stretch of nucleotides includes two or more ambiguity codes, the separation (phasing) process is not straightforward and requires specific algorithms such as Phase.

However, in order to use the original Phase code, nucleotide alignments must be reformatted, for which Flot (2010) proposed a specific program, SeqPhase.

ConvPhase combines the code of both Phase and SeqPhase in order to offer a more convenient means for the process of phasing sequences from multi-individual alignments.

Input/output formats

ConvPhase accepts various different input formats, in particular, tab-delimited text (.tsv) files, and different flavors of fasta files.

In each format, all sequences in an input file must be aligned (i.e., all sequences must be of the same length).

For the program to work properly, no missing data, gaps, or ambiguity codes coding for more than two bases should be included (i.e., only Y, R, W, S, K, M are allowed, no D, V, H, or B, and no N, ? or -). If one or several sequences include these not allowed characters, phasing may still proceed but could lead to errors and unreliable output.

When opening an input file, ConvPhase tries to automatically assess its format and parse the respective identifiers and sequences. In case of errors in the input stage, verify the format of the file and its file extension (which should be either .tab / .tsv, or .fas / .fasta).

While the program is of course able to process generic alignments in fasta format with just the sample or specimen numbers in the sequence description line, for subsequent processing e.g. in the construction of haplotype networks or genealogies, ConvPhase can also recognize and transfer to the output files information on species, population or any other grouping category. In this context, the following terminology is used: *sequence identifier* is for instance an isolate or specimenvoucher number, whereas *taxon identifier* is the category that later will be used for grouping sequences into subsets, for instance species, population, or geographical location.

tab-separated value file (.tsv or .tab). The following example shows the structure of this format. The seqid column provides the sequence identifier, the species column provides the taxon identifier. The columns can also be named otherwise, in which case the user must later specify which column is to be used as sequence and taxon identifier, respectively.

To prevent errors, sequence and taxon identifiers must not include spaces or special characters (only use underscores and regular alphanumeric characters)

seqid	species	sequence
sample1	Mantella_aurantiaca	ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
sample2	Mantella_aurantiaca	ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
sample3	Mantella_aurantiaca	ACGTYTTACATRCTTAAGCACGACTTAGCTAGTAATTCCCG
sample4	Mantella_crocea	ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
sample5	Mantella_crocea	ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG

Regular fasta (.fas, .fasta). The following example shows the same data as in the tsv file example above. In this case, only the sequence identifiers (here: sample numbers) are given in the sequence description line.

```
>sample1
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample2
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample3
ACGTYTTACATRCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample4
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
```

Fasta in MolD format (.fas, .fasta). The program MolD, written by A. Fedosov for molecular diagnosis, introduced a format where a pipe character (|) separates sequence identifier and taxon identifier. Keep in mind that no spaces or special characters are allowed in either identifier (only use underscores).

```
>sample1|Mantella_aurantiaca
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample2|Mantella_aurantiaca
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample3|Mantella_aurantiaca
ACGTYTTACATRCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample4|Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5|Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
```

Fasta in HapView format (.fas, .fasta). The program HapView, written by G. Ewing for the construction of haplotype genealogies, uses a format where a period (.) separates sequence identifier and taxon identifier. Keep in mind that no spaces or special characters are allowed in either identifier (only use underscores). If you plan to use the phased sequences for HapView (=Haplotype Viewer) rather than visualize haplotype genealogies in Hapsolutely, we recommend keeping both sequence and taxon identifiers relatively short

```
>sample1.Mantella_aurantiaca
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample2.Mantella_aurantiaca
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample3.Mantella_aurantiaca
ACGTYTTACATRCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample4.Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5.Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
```

Running ConvPhase

The program is distributed as standalone executable for Windows and Mac. It should run in different Windows environments, including Windows 10 and Windows 11.

Upon pressing either the "Open" button in the upper row of icons, or the "Browse" button in the field "Input sequences", you can select your input file. In the following screenshot, the file "ConvPhase_examplefile1.tsv" has been selected.

You can now phase your sequences either with default parameter settings, or adjust the parameters as desired.

𝔐 ConvPhase				_	· 🗆	×
ConvPhase	Open	Save	Run			i Taxo Tools
Homepage iTaxoTools Citations	Use PHASE v2.1 to red Input and output is d ConvPhase by Jan-Ch Gui by Stefanos Patm	construct haplo one with FASTA nristopher Schn nanidis.	types from population files via SeqPhase. hidt.	genotype data.		
Input sequences:	Hapsolutely alpha/0	ConvPhase_exa	mplefile1.tsv	•	Browse	
Parameters 🔺						
Number of iterations: Thinning interval: Burn in: Phase threshold (-p): Allele threshold (-q):	100 1 100 0.9 0.9	Number of N Thinning int Burn in. Phase certai Genotype ce	ICMC iterations. erval. inty from 0 to 1. rtainty from 0 to 1.			
						Ŧ

After phasing is completed, an announcement appears. In the case of example file 1, the program performs successfully with default parameter settings.

ConvPhase	Open	Save Stop
Homepage	Use PHASE v2.1 to	o reconstruct haplotypes from population genotype data.
iTaxoTools	Input and output i	is done with FASTA files via SeqPhase.
Citations	Gui by Stefanos Pa	a-Christopher Schmidt. atmanidis.
1444444	1 ConvPhase	×
Input sequences:	Convi Time	Phase completed successfully! taken: 0.35 seconds. Dformat_fasta.f * Browse
Parameters 🔺		ОК
Parameters 🔺 Number of iterations:	100	OK Number of MCMC iterations.
Parameters 🔺 Number of iterations: Thinning interval:	100	OK Number of MCMC iterations. Thinning interval.
Parameters Number of iterations: Thinning interval: Burn in:	100 1 100	OK Number of MCMC iterations. Thinning interval. Burn in.
Parameters Number of iterations: Thinning interval: Burn in: Phase threshold (-p):	100 1 100 0.9	OK Number of MCMC iterations. Thinning interval. Burn in. Phase certainty from 0 to 1.

Subsequently, you can either view and inspect the phased sequence file using the "View" button, or save it using either of the two "Save" buttons (in the upper row of icons, or in the "Phased Results" field).

After phasing, the output consists of two sequences for each original sequence, corresponding to the two alleles on the two homologous chromosomes. If the original sequence had no heterozygous positions, both output sequences will be identical. As a default, the format of the output file will be in the same format as the input file (but this can be selected before phasing). The two alleles will be named as a and b.

In tsv format, the allele information will be provided as separate column, as follows:

seqid	species	allele	sequence
sample1	Mantella_aurantiaca	a	ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCCG
sample1	Mantella_aurantiaca	b	ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
sample2	Mantella_aurantiaca	a	ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
sample2	Mantella_aurantiaca	b	ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCCG
sample3	Mantella_aurantiaca	a	ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
sample3	Mantella_aurantiaca	b	ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCCG
sample4	Mantella_crocea	a	ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
sample4	Mantella_crocea	b	ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCCG
sample5	Mantella_crocea	a	ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCCG
sample5	Mantella_crocea	b	ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG

In regular fasta format, the allele information will be appended to the sequence identifiers, preceded by an underscore.

>sample1_a ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample1_b
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCCG
>sample2_a
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample2_b
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample3_a
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample3_b
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample4_a
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample4_b
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5_a
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5_b
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG

If the input was a fasta file in MolD or HapView format, the allele information will equally be appended to the sequence identifiers, preceded by an underscore, and before the character (pipe or period) separating the sequence and taxon identifier.

>sample1_a Mantella_aurantiaca
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample1_b Mantella_aurantiaca
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample2_a Mantella_aurantiaca
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample2_b Mantella_aurantiaca
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCCG
>sample3_a Mantella_aurantiaca
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample3_b Mantella_aurantiaca
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCCG
>sample4_a Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample4_b Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5_a Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5_b Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCCG

>sample1_a.Mantella_aurantiaca
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample1_b.Mantella_aurantiaca
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample2_a.Mantella_aurantiaca
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample2_b.Mantella_aurantiaca
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample3_a.Mantella_aurantiaca
ACGTCTTACATGCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample3_b.Mantella_aurantiaca
ACGTTTTACATACTTAAGCACGACTTAGCTAGTAATTCCCG
>sample4_a.Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample4_b.Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5_a.Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG
>sample5_b.Mantella_crocea
ACGTATTACATCCTTAAGCACGACTTAGCTAGTAATTCCCG

For more detailed information on the Phase algorithm, consult the original paper of Stephens et al. (2001) (see citation on first page of this manual) or the manual of the Phase program: https://stephenslab.uchicago.edu/phase/phasefaq.html

In general, the two threshold values (Phase threshold and Allele threshold) determine the probabilities at which the program phases a sequence. By default, these values are set quite stringent (0.9) which means, only if a heterozygote sequence can be separated into the two corresponding alleles with a probability of 0.9 or higher, phasing will proceed. Otherwise, the program will produce an error message. ConvPhase will still produce an output file where sequences may be partially phased, but this file might lead to erroneous inferences in downstream analyses. This will happen with Example file 2.

In such cases, if you require a fully reliable phasing of every heterozygote position for a fully reliable haplotype genealogy, you need to determine and add more homozygote sequences, or single alleles obtained by cloning or single-molecule sequencing to the dataset before phasing.

If instead your goal is to obtain tentative alleles for visualizing or quantifying major differences and assessing the presence or absence of haplotype sharing between taxa, consider lowering the threshold values to 0.5 or below. You can test this with example file 2.

2. Hapsolutely

Example files provided:

ConvPhase_examplefile1.tsv Convphase_examplefile1_regular_fasta.fas Convphase_examplefile1_MolDformat_fasta.fas Convphase_examplefile1_HapViewformat_fasta.fas

ConvPhase_examplefile2.tsv Convphase_examplefile2_regular_fasta.fas Convphase_examplefile2_MolDformat_fasta.fas Convphase_examplefile2_HapViewformat_fasta.fas

[these are the same example files also used for ConvPhase]

Hapsolutely_examplefile3_regular_fasta.fas Hapsolutely_examplefile3_regular_fasta_phased.fas Hapsolutely_examplefile3_spartitions.spart

Hapsolutely_examplefile4_regular_fasta_long.fas Hapsolutely_examplefile4_regular_fasta_short.fas Hapsolutely_examplefile4_spartition.tsv Hapsolutely_examplefile4_spartitions.spart

Hapsolutely_examplefile5_haploidseqs_regular_fasta.fas Hapsolutely_examplefile5_spartition.tsv

Hapsolutely includes an implementation of ConvPhase and therefore, the same example files 1 and 2 introduced for ConvPhase can be used. In addition, example files 3 and 4 are here introduced to illustrate how different species partitions can be coded and visualized by Hapsolutely. Example file 4 contains mitochondrial sequences without heterozygote positions which can be used to directly reconstruct a network or a genealogy without phasing.

Hapsolutely is a comprehensive program that includes ConvPhase to phase heterozygous sequences, and can directly produce haplotype genealogies and networks, as well as various statistics focused especially on haplotype sharing and fields of recombination between subsets of sequences.

The program integrates original code from Phase and SeqPhase (in the phasing module) (Stephens et al. 2001; Flot 2010), from PopArt (for haplotype network reconstruction using different approaches) (Leigh & Bryant 2015), and from Fitchi (for reconstruction of haplotype genealogies using the Fitch approach) (Matschiner 2016). It also infers fields of recombination (Flot et al. 2010) and is able to use species partitions from SPART files (Miralles et al. 2021).

The starting (home) window of Hapsolutely consists of four main buttons which can be used to start the different analysis modules: (i) phasing, (ii) network/genealogy reconstruction, and (iii) statistics. A fourth button provides general information on the program. Furthermore, the upper row of icons provide access to routine functions such as Open input files, Save results, Clear data for starting a new analysis, and move back to the Home window.

The phasing module is identical to ConvPhase. As an added function, after completion of phasing there are direct links to Visualize or Analyze the phased data.

Hapsolutely					_		×
P Hapsolutely	Home	- Open	Save	Clear		iт	
Phase seque Reconstruct haplo could try configuri Input and output of	Uences types from sequence ing the phase param can be in TSV or FAST	e data. Output may s eters and try again. 'A format.	till contain ambiguit	ty codes, in which case yo	ц		1
Phased sequences 🖌			« v	ïsualize 📀 Analyze	Prev	iew	
Input sequences:	Hapsolutely_exar	mple_files_MV067No	v2023/Hapsolutely_	examplefile3_regular_fa 🔻	Brov	vse	
File format: Fasta File	size: 61.11 KB						
Output format:	🔘 Tabfile	🔘 Fasta	Same a	s input			
Parameters 💌							

Clicking the Visualize button (or the Haplotype networks button on the home window) opens the window with the dialogue for inferring haplotype networks or haplotype genealogies using different approaches.

The field "Species partition" determines which information is used for specimen and taxon identifiers. If the original input file had such information (e.g., as tsv or MolD-fasta format), then the program suggests parsing this information. The "Species" information typically corresponds to the taxon identifier and will be used to color the "bubbles" representing the alleles.

As default, the program will use the Fitch algorithm for reconstructing haplotype genealogies (see Matschiner 2016). For this, typically a user tree inferred under Maximum Likelihood should be imported. Instead, the program also allows generation of the tree under Maximum Parsimony or, for quick data exploration, with Neighbor-joining. It is also possible to specify that only transversions should be represented in the genealogy.

1 Hapsolutely					-	- 🗆	×
P Hapsolutely		- Open	Save	Run			i Taxo Tool
Generate and vi subset. Optiona graph style and visualized partit Input can be in Graphs can be e	De visualization sualize haplotype networ Ily draw a haploweb if inp node positions interactiv ion. TSV, FASTA or SPART/XML xported as PNG, SVG or P	n ks or genealogies fr put sequences are p ely. If species are gi L format. Input trees 2DF files.	om sequence data. hased into alleles, A ven in SPART/XML, ; for Fitchi must be	Nodes are colorized by partitio (fter generation, configure the you may dynamically select the in Newick format.	n		
Input sequences:	Previously phased sequer	nces			•	Import	
File format: Fasta File size: 123.45 KB	 Sequences are phased Parse identifiers as "ind 	Sequenc	es are partitioned				
Species partition:					•	Import	
Draw haploweb:	Connect haplotyp	es found co-occurr	ing in heterozygous	individuals.			
Network algorithm: Select the algorithm that will be used for building the haplotype network. • Fitchi: Haplotype genealogies based on Fitch distances • TCS: Templeton, Crandall, and Sing network • TSW: Tight span walker (from PopArt) • MSN: Minimum spanning network • MJN: Median joining network • MJN							
Fitchi tree:	Generate from input sequ	iences using Neighl	bour Joining		•	Import	
Transversions only:	Ignore transitions	and show transvers	ions only (default: c	vff).			

The output will be shown in the network viewer which provides multiple interactive options to adjust details of the visualization. Some of these will be explained in the following pages.

≌ Hapsolutely							- 0	×
I Hapsolutely	Home	Open	Save	Clear				TaxoTools
Editing : 5 Undo C Redo Q Zoom: 126 % • • X Node snapping Lock distances C Lock distances C Lock distances C Lock distances C Rotate scene Appearance: C Color scheme Resize edges # Resize edges # Resize edges # Resize edges # Edge style P en width S cale marks T Text font View : Members panel FORs (haploweb) FOR singletons E Legend Scale Scale		3		4	Mantella_aurantiaca Mantella_crocea		 > Node mer > Node01 sample5 Node02 > Node03 sample5 > Node04 sample5 > Node04 > sample5 > Source and the sample5 	embers
	4					F		

A unique option of Hapsolutely is to represent fields of recombination (FORs) and alleles connected by heterozygous sequences/individuals (Flot et al. 2010). The option to compute FORs can be specified before inferring the network / genealogy, but can also be activated/deactivated in the viewer.

The red dotted lines connect alleles that are found in a single heterozygous sequence. In the example file 1, the sequence "sample3" is heterozygous and after phasing, consists of the two alleles represented in red; therefore these two allele "bubbles" are connected. The entire set of alleles connected by heterozygous individuals represents one field of recombination (FOR) and is shown in a gray box. Users can choose not to display boxes for the singleton FORs (i.e., a single allele not connected to any other allele by heterozygous sequences), or switch off FOR visualization altogether.

The species partition information can also be provided from an additional file. For this, under "Species partition", either a tsv or a SPART file can be imported. The tsv file simply contains two columns containing the sequence identifier (which must coincide with that in the sequence file) and the name of the subset (= species, taxon). See examplefile 3. Additional columns may be present in the tsv, but then users must make sure to select the right ones under "Species" and "Individuals.

The following screenshot shows the haplotype genealogy of example file 3. These are sequences of a group of lizards of the genus *Madascincus*.

Hapsolutely allows for extensive editing of genealogies/networks. Here, the genealogy has been rotated, the color palette has been changed, and the little dots representing additional mutational steps (or unsampled alleles) have been changed to crossbars. Note that the crossbars count the numbers of steps (i.e., one crossbar = 1 mutational step) whereas the dots represent the unsampled haplotypes (i.e., no dot = 1 mutational step; 2 dots = 3 steps).

Hapsolutely also allows computing haplotype networks using the TCS (statistical parsimony), median joining network, minimum spanning network, and tight span walker approaches. The respective algorithms were coded by Leigh & Bryant (2015) for PopArt. Different from Fitchi haplotype genealogies, circular connections between alleles are possible in these networks.

Press the Save button in the upper row of icons to save the graph in PNG, SVG or PDF format.

Hapsolutely also supports the SPART format. See the original publication by Miralles et al. (2021) for specifications of this format. A SPART file is provided along with example file 3. The SPART file can include multiple species partitions (i.e., multiple combinations of individuals into subsets, which, in this context, may represent multiple combinations of sequences into species). The sequence identifiers in the SPART file must coincide with those in the sequence file. Hapsolutely then allows selection of one of the species partitions and assigns colors in the network / genealogy accordingly. The program also allows toggling between species partitions in the viewer.

The "Haplotype statistics" module of Hapsolutely allows to compute a series of basic descriptive statistics. The start window is similar to that of the network builder. Also here, the sequence file can be specified independently from the file which contains information on the species partition to be used.

𝔐 Hapsolutely									_		×
	solutely	۵на	me	- Open	Save		Run			іТа	xoTools
6	Haplot Identify uniq Determine fir subset and F Input can be Bulk mode a	ype statis ue haplotypes i elds of recombi ORs shared betw in TSV, FASTA o vailable only for	the sequent the sequent of the sequent the sequent the sequence the se	uence data. List ha ORs). List haplotyp sets. (ML format. Outp ML.	aplotypes per subs bes and subset occ ut is in YAML.	et ai urei	nd haplotypes shared betw nces per FOR. List FOR occu	een subsets. Jrences per			
Input sequ	uences:	Desktop/Hap	solutely_	examplefile3_regu	ular_fasta.fas			*	Im	port	1
File format: File size:	Fasta 18.79 KB	Sequence	; are pha: tifiers as	sed 🗌 Seq "individual"	uences are partitio	ned	I				
Input part	tition:	Hapsolutely	Ipha/Ha	psolutely_example	efile3_spartition.ts\	/		Ŧ	Im	port	1
File format:	Tabfile	Partition:	species					•			
File size:	1.96 KB	Individuals:	seqid					• •			
											Ţ

The descriptive statistics computed are focused on information relevant for species delimitation, i.e, haplotypes shared between subsets (species), individuals included in each field of recombination, or fields of recombinations shared between pairs of species.

1 Hapsolutely			—		\times
P Hapsolutely	IP IP IP	_		×	Tools
Haploty Identify uniqu Determine fiel subset and FO Input can be in Bulk mode ava	<pre>subset_b: Mantella_crocea common: Hap001: 1 Hap004: 1 - subset_a: Mantella_milotympanum subset_b: Mantella_madagascariensis common: Hap006: 1 Hap008: 1 - subset_a: Mantella_milotympanum subset_b: Mantella_crocea common:</pre>				<u> </u>
Haplotype statistics	Hap006: 2 Hap004: 3 Hap007: 1				
Input sequences:	- subset_a: Mantella_milotympanum subset_b: Mantella_aurantiaca common: Haro006: 2				
File format: Fasta File size: 18.79 KB	Hap0007: 1 - subset_a: Mantella_madagascariensis subset_b: Mantella_crocea common:				
Input partition:	<pre>Hap006: 1 - subset_a: Mantella_madagascariensis subset_b: Mantella_aurantiaca common:</pre>				
File format: Tabfile File size: 1.96 KB	Hap006: 1 Hap011: 1 Hap012: 1 - subset_a: Mantella_crocea subset_b: Mantella_aurantiaca common: Hap020: 1			V	
		Save	CI	ose	

Hapsolutely contains numerous other options that are best explored by running the program with the example files. The following list hints at several options and issues to keep in mind.

► In Hapsolutely each allele "bubble" is called a "node" and the branches connecting them are "edges".

► The viewer includes an "Undo" button which allows undoing almost all commands executed to edit the network / genealogy.

► Each node by default shows the number of sequences by which the respective allele is represented. To remove this number, use the option "Text templates" and delete the term "Weight" from node label.

► Under edge styles, you can choose between bubbles =dots) or bars to represent additional mutational steps (or unsampled alleles). Note that the crossbars count the numbers of steps (i.e., one crossbar = 1 mutational step) whereas the bubbles represent the unsampled haplotypes (i.e., no bubble = 1 mutational step; 2 bubbles = 3 steps). The "cutoff" value indicates the maximum number of steps that are shown as single bars or bubbles; connections of more steps are collapsed and the number of steps is shown instead.

► The "Members panel" button opens a list where the sequence identifier is shown for all sequences represented in each node. The list can be exported and saved using the button below the list.

► In Fitch genealogies (without circular connections among haplotypes), edge lengths are strictly proportional to the number of mutational steps, and the length is locked. Nodes can therefore be moved only while maintaining the distance. This can be changed by unselecting the "Lock distances" button. In haplotype networks inferred by other algorithms, distances are by default unlocked (and indeed cannot be locked).

► The "Scale marks" button allows adjusting the scale that indicates the number of sequences per node.

► Node size can be adjusted either using a linear factor, an area factor or a logarithmic factor. The "base radius" specifies the minimal size of a node containing one sequence. In order to have node radius fully proportional to the number of sequences per node, set the linear factor to 1. In order to have node area fully proportional to number of sequences per node, set the area factor to 1.